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ABSTRACT 
As physical computing devices proliferate, researchers and 
educators push to make them more engaging to learners. One 
approach is to make the act of programming them more 
interactive and responsive via live programming so that program 
edits are immediately reflected in the behavior of the physical 
device. To understand the impact of live programming on 
interactions with physical computing devices, we conducted a 
comparative study where children ages 11-15 programmed a 
BBC micro:bit device using either the MicroBlocks live 
programming environment or MakeCode, the micro:bit default 
environment. Results show that MicroBlocks users spent more 
time interacting directly with the physical device while showing 
different paerns of interaction compared to MakeCode users. 
We also found variations in the differences between 
environments related to activity structures. is paper 
contributes to the growing body of literature on how the design 
of interfaces—like programming environments—for physical 
computing devices shapes emerging interaction paerns. 
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Introduction 
The push to introduce children to computer science and the 

big ideas of computing is increasingly including physical 
computing devices. Ten years ago, engaging children with 
computing usually meant sitting them down in front of a 
computer screen and keyboard. Today, a new landscape of 
devices is changing how, where, and when kids can interact with 
computing. Robots, microcontrollers, wearables, and dozens of 
other elements in the Internet of Things now serve as entry 
points into the world of computing for young users. With this 
growing ecosystem of computing devices comes a similar 
growing set of ways for learners to interact with and control 
these computational devices.  

The physical nature of the devices and their technical 
capabilities shapes both how a child can interact with them and 
what they can do through that interaction. Physical computing 
devices can include accelerometers, sensors, and physical inputs 
like buttons and switches alongside visual and audio inputs and 
outputs. These capabilities introduce new sets of challenges and 
opportunities for the interaction designers tasked with figuring 
out how to make these devices accessible and engaging to 
children. Towards this end, this paper seeks to understand one 
specific aspect of the design of introductory programming 
environments that has found widespread success in virtual 
introductory programming environments but is rarely seen in 
programming environments for physical devices—live 
programming. In a live programming environment, users can 
modify a program as it is running, thus allowing them to see the 
results of edits immediately. The resulting liveness of the 
environment makes for a highly engaging and interactive 
programming experience and has been credited for part of the 
success of the Scratch programming environment [1]. This direct 
control over the resulting program has interesting potential 
ramifications in the context of physical computing as it directly 
connects the physical device in the hand of the programmer with 
the virtual code they are writing. More specifically, this paper 
seeks to understand how liveness impacts user interaction in the 
context of physical computing by answering the following 
research question:  
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How does an environment supporting live programming 
impact the way kids interact with and program a physical 
computing device?  

To begin to answer this question, we conducted an 
exploratory study using two comparable programming 
environments for the BBC micro:bit, one that supports live 
programming and a second that does not. We recruited 11 
children between the ages of 11 and 15 and had them write 
programs for the micro:bit using one of the two environments. 
We then analyzed the results looking for differences in the 
programming practices used as well as differences in how they 
interacted with the device while programming it. This paper 
contributes to our understanding of the design of technology for 
children and how the interplay between programming a device 
and physically manipulating it shapes resulting interactions. 
Further, this paper advances our understanding of how to design 
programming environments for physical computing devices, 
specifically with respect to how liveness shapes engagement and 
interaction. 

The paper continues with a review of relevant prior work. 
We then introduce the technologies that are the focus of this 
paper, the BBC micro:bit and our two programming 
environments: MicroBlocks and MakeCode. Next, we detail our 
methods before presenting our findings on how liveness shaped 
interactions with the physical computing device. We conclude 
with a discussion of the implications of this work with respect to 
design and interaction. 

Prior Work 

Microcontrollers and Physical Computing Kits 
Microcontrollers and physical computing devices specifically 

designed for kids have a long and rich history [2]–[4]. The idea 
of programmable microcomputers for kids grew out of a 
collaboration between MIT’s Media Lab and the LEGO group, 
which resulted in a programmable brick where basic programs 
could be written to control motors and servos built with the 
LEGO bricks [5], [6]. Over time, the LEGO bricks added new 
capabilities, particularly around the introduction of sensors that 
made it easier for builders to more directly interact with the 
world around them [7]. These early construction kits were the 
antecedents to the popular line of Lego Mindstorms construction 
kits still in use today. As the tools and their abilities advanced, 
designers sought to give users more direct access to the 
underlying computational capabilities, moving beyond the “black 
box”, making processes more visible and accessible [8]. 

Over time, designers of physical computing kits for kids 
began to focus on ways to broaden participation in computing 
and access to knowledge. For example, designers sought to 
create programmable computing kits that were accessible to kids 
as young as 4 years old by creating direction manipulation, 
program-by-demonstration robots [9]. A second example of 
expanding access was the creation of open-hardware and open-
source software boards that made it possible for devices to be 
built and used in places where such technologies were 
historically not available [10], [11]. This wave of computing kits 

reflects not a technological advance, but a shift in the focus of 
the design, towards new audiences, new interaction patterns, 
and new opportunities to reach children. 

As the landscape of physical computing devices matured and 
toys and toolkits grew in popularity, new designs and new 
architectures emerged. Many of these new platforms and updates 
to existing platforms sought to achieve the goal of “low-floors, 
high ceilings, and wide walls” by adopting and implementing 
recommendations from the IDC community [12]. Constructions 
kits such as Topobo [13] and RoBlocks (later Cublets) [14] 
highlight new modular construction approaches for building and 
controlling computational constructions. The growth in 
popularity and diversity of physical computing kits has resulted 
in a growing number of tools and platforms designed explicitly 
for younger learners. A recent review of such technologies 
identified 25 distinct computational kits for kids under the age of 
7 that include a physical component [15]. This review highlights 
the diversity of ways kids can be supported in giving 
instructions to physical computing devices. These included 
writing programs in a virtual context and transmitting them to 
the physical device (e.g. Finch Robot [16]), giving instructions 
directly to the physical device using buttons or on-board 
controls (e.g. Code-a-pillar), as well as tangible programming 
environments, where physical blocks are manipulated to 
compose programs that are then run either by a physical or a 
virtual sprite (e.g. Strawbies [17]) or a physical robot (e.g. KIBO 
[18]). 

Novice Programming Environments 
Interestingly, the earliest programming environments design 

for young learners and the earliest physical robotics kits came 
out of the same research group at MIT. The creation of the Logo 
programming language was the first time that computing power 
was put at the fingertips of young people [19]. As computing 
became more widespread, programming language designers 
began to recognize the utility of having languages that were 
more accessible to novices and could be used in instructional 
contexts.  

Today, novices are increasingly being introduced to 
programming using graphical programming environments that 
make programming easier and more accessible to learners [20]. 
One notable approach that has seen widespread adoption is 
block-based programming. Block-based programming uses a 
programming-command-as-puzzle-piece metaphor to provide 
additional information to the user about how and where a 
command can be used. Using visual cues and enforcing basic 
composition rules, the environment itself can minimize or 
altogether eliminate syntax errors while still retaining the 
practice of authoring programming by assembling commands 
one-after-the-other [1]. Led by the popularity of environments 
such as Scratch [21], Alice [22], and Blockly [23], block-based 
programming has a growing presence in both formal and 
informal educational contexts. This can be seen in the rise of 
curricula built around block-based tools (e.g. Exploring 
Computer Science [24] and many of the Code.org courses [25]) 
as well as a growing number of toys and games for younger 
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learners that leverage the block-based approach [26]. Research 
on novices working with block-based tools shows that students 
perceive block-based programming as being more accessible [27] 
and also finds learners complete programming tasks more 
quickly [28] and perform better on assessments in block-based 
contexts [29], [30].  

Creating intuitive and accessible programming interfaces for 
novices can also be seen in the world of physical computing kits. 
While the most popular microcontrollers are still mainly 
controlled with professional languages and technologies (e.g. 
C/C++ languages for Arduino boards), a growing number of 
platforms are introducing learner-friendly programming 
interfaces for their devices. For instance, the popular Scratch 
environment includes extensions for programming a number of 
devices, including the Makey Makey, micro:bit, Lego Mindstorms 
EV3 and Lego WeDo [31]. Collectively, innovations in the design 
of novice programming environment have made it easier for 
novices and younger users to programmatically control 
microcontrollers and physical robotics kits. 

Live Programming 
The defining feature of a live programming environment is 

that changes made to the program are reflected immediately 
giving the programmer the impression of changing the program 
while it is running [32]. This means no manual compilation or 
run step is required for edits or additions to a program to be 
reflected. Live programming is not a recent innovation (e.g. [33], 
[34]), however, there has been renewed attention in both 
industry and in academia in recent years [35]. In a 2018 
literature review, researchers  found 87 academic papers on the 
topics of live programming with another 112 papers on the topic 
of live coding, and 31 papers focusing on exploratory 
programming [32]. All three of three terms (live programming, 
live coding, and exploratory programming) share the 
characteristic of liveness in the act of programming but differ 
slightly on how it is used. Live coding is generally concerned 
with the creation of art and performance  (e.g. [36], [37]),  
whereas live programming is more explicitly focused on the act 
of programming (e.g. [38], [39]). In the case of exploratory 
programming, the focus is on tools that support the creation of 
programs where final requirements are not yet defined, so ease 
of quick prototyping is emphasized (e.g. [40]). Each of the 
communities rely on different affordances of liveness with a 
growing literature-base teasing apart the various supports. 

The literature cites a number of advantages of live 
programming. First is how the approach minimizes latency 
between programming and seeing its effect, aiding in the 
development process [41], what Burckhardt et al. [42] call the 
“temporal and perceptive gap”. A second benefit relates to 
enabling the act of programming to become a form of 
performance in a way not possible in non-live environments [43]. 
A third benefit of particular relevance in this work is the 
pedagogical potential of live programming. In live programming 
environments, learners receive immediate feedback on the effect 
a given instruction, parameter argument, or value will have on 
the resulting behavior of the program. This feature is 

particularly well-suited for languages and environments focused 
on visually rendering objects [44] and can be seen in the 
popularity of languages like Processing in educational contexts 
[45]. Other work shows how live programming can facilitate 
debugging by providing insight into the state of a program and 
how changes to the code impact outcomes [46]. Victor, in an 
influential series of prototypes, demonstrated a number of ways 
that features of live programming could support novices learning 
to program including direct manipulation of function parameters 
that immediately influence the resulting program output [47]. 
However, other research has failed to find difference in learner 
performance in live environments compared to non-live 
alternatives [48], however this work was quite different than this 
study as it was working with undergraduates in a formal 
learning context and did not consider aspects of engagement or 
programming practice.  

Device and Environments 
At the heart of this paper are three technologies: a small, 

inexpensive microcontroller called the BBC micro:bit and two 
programming environments for it: MakeCode and MicroBlocks.  

Meet the BBC micro:bit 
The BBC micro:bit (Fig. 1) is an inexpensive (around $20 in 

the United States), credit-card sized computer created by the 
British Broadcasting Corporation (BBC) as part of an effort to 
increase digital skills among UK school children and "inspire the 
digital visionaries of the future" [49]. In early 2016, the BBC 
distributed free micro:bit's to every 7th grader in the UK school 
system (about 800,000 children) [50], then spun off the non-
profit micro:bit Educational Foundation with the goal of 
shipping 100 million micro:bits to children around the world [51]. 
To date, over 2 million micro:bits have been distributed [52]. 

The micro:bit combines a 32-bit ARM microcontroller with 
sensors, buttons, an accelerometer, and a 5x5 grid of LEDs that 
can show graphics or alpha-numeric outputs. Although the 
micro:bit can be connected to external devices such as lights, 
motors, and sensors, its rich set of built-in features allows 
learners to focus on programming first, then add electronics later, 
if desired. This makes it possible to use the micro:bit with 
younger users than systems that require learning electronics and 
programming at the same time, such as the Arduino.  

Figure 1: The front (left) and back (right) of the micro:bit. 
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To program the micro:bit, the device must be physically 

connected by a cable (i.e. tethered) to the laptop or computer on 
which the program is being written. It is possible for the user to 
interact with the micro:bit and its features (e.g. buttons and 
accelerometer) while still tethered to the computer. In a non-live 
programming environment (like MakeCode), the program must 
be downloaded and transferred to the micro:bit manually, a 
process that usually takes around 10 to 20 seconds. In a live 
programming environment (like MicroBlocks), the program is 
downloaded automatically in the background so the 
programming being run on the micro:bit always matches what 
the user sees on the screen. 

Meet MicroBlocks 
MicroBlocks (Fig. 2) (http://microblocks.fun) is a block-based 

programming environment designed for physical computing kits. 
Inspired by Scratch [21], GP [53], Snap! [54], and other “low-
threshold” block-based programming environments, the 
interface shares many features common to this popular design 
approach for introductory programming environments. These 
features include a blocks palette on the left side of the interface 
organized into high-level categories from which users can drag 
blocks onto the canvas, where scripts are assembled. The version 
of MicroBlocks used for this study was customized for the 
micro:bit, so it included categories such as LED and Pins and 
blocks such as Tilt X and show LEDs to give the user control 
over the capabilities of the device.  

Figure 2: MicroBlocks and two solutions for Challenge 1. 

MicroBlocks combines the benefits of liveness when tethered 
with autonomous operation when untethered. While the user is 
writing and debugging their code, MicroBlocks behaves like a 
tethered system, providing liveness, data readouts, and 
immediate feedback and allowing the user to discover new 
features and tinker with their code as they would in Scratch. 
This means a user can click on a block, such as button A, and get 
a real-time readout of whether the button is being pressed on the 
device. Behind the scenes, the user's code is incrementally 
downloaded and run on the physical device using a virtual 
machine to avoid the need for a compilation step. When the 

device is disconnected from the laptop, it continues to run the 
user's program autonomously. This design makes MicroBlocks a 
live programming environment with no explicit compilation or 
download step that allows the user to untether their device at 
any time and have the latest version of their program continue 
running on the device. A longer discussion of the technical 
implementation of MicroBlocks can be found in  [55]. 
MicroBlocks was chosen for this study due to its novelty of 
being a live programming environment for a physical computing 
device. 

Meet MakeCode 
MakeCode (Fig. 3), (https://makecode.microbit.org/) the 

programming environment linked to directly from the 
micro:bit’s home page, was developed by Microsoft and is an 
open source web-based environment for coding physical 
computing devices [56]. MakeCode is able to run entirely within 
a web browser, meaning there is no software to install and the 
platform can run on a variety of different types of devices 
(including tablets and smartphones). Like MicroBlocks, 
MakeCode provides a block-based programming interface that 
includes micro:bit-specific blocks alongside conventional 
programming commands. MakeCode also includes a text-based 
programming editor allowing users to write programs for the 
micro:bit in JavaScript.  

Figure 3: MakeCode and a solution for Challenge 1. 

There are two defining features of MakeCode that distinguish 
it from MicroBlocks. First, in order to run a program on the 
physical device, the program must be compiled and downloaded 
to the device. This can be accomplished by clicking the 
download button and then dragging the file from the local 
computer’s drive onto the micro:bit. For this study, the computer 
was configured so MakeCode programs downloaded directly to 
the micro:bit, a procedure that usually takes around 12 seconds. 
The second feature unique to MakeCode is the inclusion of a 
virtual micro:bit simulator (shown at the top left of Fig. 3). This 
simulator makes it possible to run micro:bit programs without 
needing to go through the download procedure. The simulator 
includes the 5x5 LED grid, two buttons that can be “pressed” by 
clicking on them, and supports tilting and shaking by moving 
the mouse over the simulator. These features (the need to 
download the program to run it on the physical device and the 



Programs in the Palm of your Hand IDC 2019, June 12-15, 2019, Boise, ID, USA. 
 

 

virtual simulator), along with the fact that MakeCode is the 
environment used on the official micro:bit website, are the 
reasons why it was chosen as the second environment for this 
study. 

Methods  

Study Design 
This paper reports on the findings of an exploratory 

comparative study investigating if and how a live programming 
environment shapes the way children interact with and program 
physical computing devices. To begin to answer this question, 
we recruited 11 children and had them write a series of short 
programs using either a live programming environment 
(MicroBlocks) or a conventional programming environment that 
required downloading and transferring programs to the physical 
device (MakeCode). As much as possible, the two programming 
environments were isomorphic, meaning the two environments 
had the same set of blocks and presented the same set of 
capabilities to the user. The goal of the study design is to try and 
control for external factors beyond the live programming 
component as much as possible. Differences between the two 
environments beyond the live programming feature are 
discussed in greater detail later in the limitations section. 

Participants & Procedures 
Children were recruited to participate in the study via email, 

social media, and personal communications. A total of 11 
children (6 males, 5 females) between the ages of 11 and 15 (M = 
13.2, SD = 1.33) participated in the hour-long study and were 
allowed to keep the micro:bit as compensation.  

Participants were assigned to use either the MicroBlocks or 
MakeCode environment. Our approach for assigning participants 
to an environment was to alternate environments between each 
interview: the first participant used MakeCode, the second used 
MicroBlocks, the third used MakeCode, and so on. The 
MicroBlocks group was comprised of 5 girls and one boy (age M 
= 13.5), while the MakeCode group was composed of 5 boys (age 
M = 12.8). The gender imbalance was coincidental but still 
potentially problematic and is discussed in the limitations 
section. 

The study procedure began by going through a consenting 
procedure and was followed by a short introduction to the 
micro:bit, showing off the main features of the device. This 
included showing participants the 5x5 LED matrix, the two 
buttons, and describing how the device has an accelerometer so 
can detect being tilted or shaken. Next, the researcher gave the 
participant a brief introduction to the programming environment 
that he or she would be using. This included describing how to 
compose a program as well as how to run it on the micro:bit. In 
the case of the MakeCode, the interviewer also described how 
the micro:bit simulator worked on the screen. As much as 
possible, the introduction to the programming environments was 
the same between the two conditions. The introduction lasted 
around 3 minutes. 

The remainder of the study was divided into two 20-minute 
parts. The first “tinkering” phase had participants play around 
with the micro:bit to create any program that they wanted. The 
goal of this stage was to give kids time to get acquainted with 
both the device and the programming environment, as well as to 
see how the environments shaped interactions with the device 
during free play. Since the participants had already seen the 
initial demonstration, we only provided additional assistance if 
the participant requested it. While we wanted to give 
participants the freedom to explore the tools, we also wanted 
them to acquire some initial knowledge that would at least give 
them a chance to succeed in completing the challenges. 

The second phase of the study consisted of three 
programming challenges. Whereas the tinkering phase was 
looking at aspects of engagement and playfulness, the challenges 
were designed to get the participants to use specific 
programming concepts (e.g. conditional logic) and capabilities of 
the device (e.g. button pressing). The tasks were designed to be 
of increasing difficulty.  

Figure 4: Tilting micro:bit on Challenge 1 

The first challenge was to create a program so that when the 
micro:bit was tilted to the left (Fig. 4), its leftmost column of 
LEDs would turn on and when tilted to the right, the right-most 
column of lights should turn on (Fig 5a). For the second 
challenge, participants had to create a program so that when the 
left button was pressed and the micro:bit was tilted to the left, 
and arrow would show on the left side (Fig 5b). The same arrow 
would need to show on the right side when the right button was 
pressed and the micro:bit was tilted to the right.  

Figure 5: LED patterns for challenges 1 (a), 2 (b), and 3 (c). 
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The last challenge was to create a program so that when the 
micro:bit was tilted upwards, it would display a “cascade” of 
lights where the top row lit up, followed by the 2nd row and so 
on, as shown in Fig. 5c. The participant was asked to make the 
cascade repeat three times. 

Data Collection & Analysis 
We captured three main sources of data. First, we video-

recorded each participants’ interaction with the micro:bit (Fig. 4). 
Second, we used screen capture software to record how 
participants interacted with the programming environments. 
Third, we audio-recorded the sessions. These data sources were 
individually analyzed and then collectively deductively coded 
using NVivo [57].  

For each screen recording, we coded each time a new block 
was added to the program, as well as each time the participant 
explicitly ran their program on the micro:bit.  In MakeCode, this 
took the form of the user clicking on the “Download” button and 
transferring the program onto the device. In MicroBlocks, the 
live feature incrementally downloads programs automatically, so 
we recorded only when participants “forced” a run by clicking 
on the “Start” button or on program script. For participants using 
MakeCode, we also recorded each time they used the simulator—
defined as tilting the simulated micro:bit or clicking on either of 
its buttons. These results are reported in the “Sim. Buttons” and 
“Sim. Tilts” columns in Table 1. 

As we are interested in how the children interacted with the 
micro:bit, we quantitatively analyzed each micro:bit video, 
coding for four specific types of interaction: how many times the 
participant touched the micro:bit, how long (in total) they touch 
the device for, how many times they tilted the micro:bit, and 
how many times they press the micro:bit’s buttons. We also 
calculated the average time per touch for each child.  

While our quantitative findings are reported, we did not 
conduct formal statistical analyses to compare interactions 
between the two groups. This is due both to the size of our 
participant pool (n = 11) as well as the exploratory nature of the 
study. As such, the findings below report mainly qualitative 
findings seeking to understand how the live programming 
feature shaped the way children engaged and interacted with the 
technology. When we use quantities to describe interactions, we 

do so to illustrate differences or similarities across groups—not 
to make generalizable conclusions. One goal for this work is to 
lay the groundwork for future studies with larger participant 
pools that would allow us to make more robust inferences. 
Beyond the quantitative measures, the analysis of the micro:bit 
video and the screen capture were then aligned to create 
timelines for each participant showing their sequence of 
interactions. This was done to analyze participants’ behavior and 
look for patterns between the physical and virtual aspects of 
programming the micro:bit. 

Findings 
This section begins by discuss findings from the Tinkering 

phase before moving on to results from the challenges phase. 

Tinkering 

Micro:bit Capabilities.  
The first difference that emerged in our analysis of the 

tinkering phase was in the micro:bit capabilities that participants 
chose to incorporate into their programs. Five of the six 
participants who used MicroBlocks created programs that 
involved either button pressing or device tilting. In contrast, 
only 2 out of the 5 MakeCode users created such programs. All 
participants also created programs that involved the LED lights 
in the micro:bit.  This suggests that the live programming 
aspects of MicroBlocks and the in-editor simulator of MakeCode 
impacted how children interacted with the micro:bit—
particularly on their intent to integrate physical interactions. 
One potential explanation is that the ability to immediately test 
the effects of tilts or button presses in the live programming 
environment led to an increase in the use of those interactions in 
the program. However, we simply counted participants who 
attempted to integrate tilting or buttons, not just those who were 
successful in doing so. Therefore, another possible explanation is 
that the mere expectation of liveness that MicroBlocks 
participants had led them to attempt to integrate physical 
interactions that could be tested immediately. The same 
principle was true for the MakeCode participants as most created 
programs that could be tested immediately by looking at the 
LEDs in the simulator. We will return to the idea of expected 
liveness again in our analysis of the challenges. 

 

 n Gender Age Blocks Runs Time  
touching 

Time per 
touch 

micro:bit 
Touches 

micro:bit 
Buttons 

micro:bit 
Tilts 

Sim. 
Buttons 

Sim. 
Tilts 

MicroBlocks 
Tinkering 

   
21.6 5.6 65.9 4.54 14.5 17.3 1.8 – – 

Challenges 21 6.3 425.8 22.8 18.7 13.3 67 – – 
Total 6 1M / 5F 13.5 42.6 11.3 491.7 14.8 33.2 30.67 68.83 – – 
MakeCode 
Tinkering 

   
23 3.8 59.6 11.04 5.4 28.4 14.6 4.4 4 

Challenges 19.2 5.4 223.2 22.3 10 34.4 42 6 21.4 
Total 5 5 M 12.8 42.2 9.2 282.8 18.4 15.4 62.8 56.6 10.4 25.8 

Table 1.  Interaction averages per group. Times are in seconds. 
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 Of the 7 children who created programs with a physical 
interaction, all but one of them used only one type of interaction, 
either tilting or button pressing, but not both. This suggests that 
while the live programming encouraged children to experiment 
with the physical capabilities, they were not motivated to try all 
of the capabilities on display. It is possible that these results 
stemmed from the relatively limited time provided to explore the 
new device and its programming environment. 

Interaction Patterns.  
Looking at our basic measures of interaction during the 

Tinkering stage (Table 1), we see that MakeCode users touched 
the micro:bit for longer periods of time but less often. In other 
words, users of MicroBlocks seemed to make short but numerous 
touches, while MakeCode users made fewer, longer micro:bit 
touches. In terms of specific interactions, the MakeCode group 
recorded more button presses but fewer tilts than the 
MicroBlocks participants during this phase. Within the 
MakeCode group, 4 out of the 5 participants used the simulator 
during the tinkering phase.  

There are a number of possible factors that contributed to 
these differences we noticed between groups. For example, 
MicroBlocks participants could only interact with the micro:bit 
one way (by touching it), while MakeCode participants could 
both touch the physical device or use the simulator. This may 
have contributed to the additional number of touches in the first 
group. Therefore, it is possible that the presence of the simulator 
promoted MakeCode users to more heavily focus on the screen—
therefore neglecting interactions with the device. As one 
participant from this group explained after the challenges: “I 
would prefer to program something that is just in the computer [as 
opposed to a device] because that was easier”. It’s also possible 
that the pattern of “short but often” touches in the MicroBlocks 
group stemmed from the live feature in the environment. Seeing 
immediate changes in the device may have prompted more 
interactions with it to check programming progress. This more 
direct interaction and immediate feedback could explain the 
greater number of interactions with the micro:bit. 

In summary, MakeCode participants tended to touch the 
micro:bit less often but for longer periods of time per touch, 
while MicroBlocks users touched the device more often but for 
shorter durations.  

Challenges 

Challenge Success Rates.  
Looking across the two conditions, we found the MakeCode 

group had slightly more success with respect to completing the 
challenges. All five of the MakeCode participants completed the 
first challenge, compared to only four of the six MicroBlocks 
participants. One child from each group completed the second 
challenge. Further, children in the MakeCode condition typically 
finished the first challenge more quickly, leaving more time to 
work on the second challenge. 

Our explanation of this difference has less to do with the live 
programming capability of the environments and instead, we 
attribute it to slight differences in the programming interface. As 

shown in Fig. 3., MakeCode has a single event block for a tilt 
event. On the other hand, MicroBlocks required participants to 
use the block tilt X alongside another command (either an if 
block or the on condition event block, both shown in Fig. 2). It is 
possible that children in the MicroBlocks group were less 
successful in completing the challenge because it required a 
more complex combination of blocks. As such, the finding from 
this difference supports other literature looking at how language 
design impacts novice programmers [29], [58], but does not lead 
to conclusive evidence on the role of live programming in 
accomplishing tasks.  

Interaction Patterns.  
During the challenges phase, we noticed that participants in 

the MicroBlocks condition seemed to interact with the micro:bit 
more often and for a longer total amount of time—an interaction 
pattern that aligns with the results of the tinkering phase. 
Addutuinally, MakeCode participants pressed the micro:bit’s 
buttons more often than MicroBlocks users while the opposite 
was true for tilting interactions. Finally, the number of simulated 
tilts by MakeCode users seemed to increase during the 
challenges phase, which can be logically explained by the nature 
of the challenges. 

The differences in interaction during the challenges can in 
part be explained by the success rates reported in the previous 
section. Because the MakeCode environment has built-in blocks 
for actions associated with tilting, it is possible that kids who 
used MakeCode tilted the device fewer times because they did 
not need to test their tilting logic as often. Likewise, because the 
MakeCode participants advanced to the second challenge faster, 
which required them to program a button press, it is not 
surprising that we recorded more button presses in the 
MakeCode condition. 

Programming Practices.  
Combining the analyses of the interaction cameras and the 

screen recordings, we identified different patterns of 
programming during the challenges. We hypothesized that each 
group would show different interaction patterns based on the 
affordances of the environment. We expected to see MicroBlocks 
users add blocks, test the results on the micro:bit, and then go 
back to adding blocks to correct or expand on the program  (Fig. 
6a). On the other hand, we expected MakeCode participants to 
use the simulator for iterative development and then download 
and test the program on the physical device once it was closer to 
completion (Fig. 6b).  

Figure 6: Hypothesized programming patterns. 

All six of the participants in this group showed instances 
where the sequence shown in Fig. 6a was followed: add block, 
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touch the device, add block was repeated multiple times 
consecutively. While all 5 MakeCode participants used the 
simulator at least once during the challenge phase, three of them 
used the simulator to test recently added blocks and continued to 
edit the program based on the simulator’s results without 
interacting the device.  

Comparing the interaction patterns across environments, two 
differences arose. First, MicroBlocks users appeared to alternate 
between adding blocks and touching the device more often than 
MakeCode users. A second—and unexpected—result was that 
some children in the MakeCode group often showed our 
hypothesized MicroBlocks interaction of making modifications 
and going right to the physical device (shown in Fig. 6a). For 
example, one participant who was working on challenge 2 found 
that his LED pattern was incomplete—the micro:bit was turning 
on three lights instead of the required eight. To fix this problem, 
he proceeded to change his program to add the correct amount 
of lights on his show LEDs block and then immediately tilted the 
micro:bit to see any changes. After unsuccessfully trying to tilt 
the micro:bit twice, he realized his mistake and pressed the 
“download” button. Here again, we see the phenomenon of 
expected liveness, even when the environment is not actually 
“live”.  

Logically, engaging in the block-touch-block pattern in 
MakeCode is problematic as the code modifications will never be 
reflected on the physical devices as they have not been 
downloaded to it. But, as illustrated in this example, some 
participants made edits to their program and then checked to see 
the outcome on the micro:bit despite the micro:bit still running 
an older version of the code that did not have the most recent 
change. Four out of the five MakeCode participants touched the 
device after adding blocks without downloading the program 
first. Two of them did so repeatedly. In other words, it appeared 
as though the participants were expecting a live programming 
behavior that was not present. This expectation was particularly 
problematic while debugging as there was a case where—
contrary to our example—a correct modification was made but 
the participant did not think it was correct because he did not see 
the changes reflected on the device. This is a concrete 
demonstration of one of the benefits of live programming 
reported in the literature [59]. 

Discussion 
The numerous small comparisons between the two groups 

help us illuminate the bigger point of how the liveness in 
MicroBlocks impacted how participants programmed and 
interacted with the micro:bit. During the tinkering stage, 
liveness seemed to prompt shorter, more numerous interactions 
with the physical device, as well as more attempts to integrate 
button presses and tilts into the program. When the activity 
shifted to structured tasks where interaction with the micro:bit 
was required, those differences persisted, with participants in the 
MicroBlocks condition touching the device more often and for a 
longer total amount of time. However, it is also possible that the 
differences in interaction were not exclusively due to liveness. 

The presence of the simulator in MakeCode may have changed 
how and when users chose to interact with the device directly.  

In terms of programming patterns, the liveness of 
MicroBlocks seemed to support an incremental process that 
continuously alternated between adding blocks to the program 
and testing their effects directly on the physical device. On the 
other hand, the simulator in MakeCode provided a few situations 
where testing could be done virtually, and physical interaction 
was limited to testing final solutions. In fact, one participant 
completed the whole program using only the simulator, stating 
he was done without testing it on the physical device.  

The Expectation of Liveness 
One of the interesting findings to emerge from this study was 

documenting children’s expectations of a live programming 
interaction, even when the environment did not have that 
capability. This can be seen most clearly by the fact that all but 
one of the participants in the MakeCode condition tried to test a 
programmatic change on the physical board without 
downloading it to the board first. This is a potentially significant 
finding with respect to the design of programming environments 
for novices. As more and more interfaces and devices 
demonstrate live programming behavior, young users may come 
to expect such immediate feedback, meaning non-live 
environments may become less engaging or enjoyable. It is also 
possible that the mismatch between the users’ expectations and 
the behavior of the system may become the source of errors and 
frustration. The lack of liveness can also negatively impact the 
user’s experience, as one MakeCode participant said mid-session: 
“hurry up and save!” In this case, the child knew the environment 
was not updating “live”, but it was clear he would have preferred 
if it was. 

Environment Design Impacts 
The two environments used in this study also provided some 

insights into the tensions of designing environments with low 
floors and high ceilings [12] and how interface design decisions 
we make impact the paths users take. One clear example of this 
from this study can be seen in how the design of the languages 
impacted the transition from challenge 1 to challenge 2. 
Challenge 1 asked users to write a program to respond to the 
micro:bit being tilted. Challenge 2 added the requirement of a 
new behavior when the button was pushed while the micro:bit 
was being tilted. MakeCode provides a single event block (on tilt 
left) that made it easy for participants to complete the first 
challenge, but in order to modify the program to also accomplish 
the second challenge, the child would need to add a conditional 
statement inside the event, as there is no on tilt left and button 
pushed command. As a result, all MakeCode participants 
completed the first challenge but most struggled with the second. 
In this way, MakeCode was low-threshold but left a significant 
conceptual hurdle for Challenge 2. 

MicroBlocks, on the other hand, did not have a single block to 
respond to the micro:bit being tilted. Instead, it required the user 
to build the behavior from a generic on condition event block. 
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This made challenge 1 more challenging (two of the MicroBlocks 
participants did not complete it), but the transition from a tilting 
behavior to a tilting-and-button-pressed behavior was relatively 
straightforward. In this difference between how the two 
languages supported the novice in implementing this 
functionality, we can see the impact of language and interface 
design shaping user interactions. 

Physical Computing Devices for Younger Ages 
One contribution of this study is additional evidence to 

support the introduction of children to basic programming, and 
the field of computer science more broadly, through physical 
computing. All of the participants seemed to enjoy the 
experience and were excited to keep the micro:bit at the 
conclusion of the session, with some saying that the tinkering 
stage was “fun” and “cool”. 

While this study did not focus on learning outcomes, the 
identified differences in interaction due to the liveness do have 
potential educational implications. The programming patterns 
users develop and their emerging conceptualizations of basic 
computing ideas are all shaped by the tools used. Identifying 
how liveness impacts learning in physical computing contexts is 
a clear future direction of our work—especially given the large-
scale rollouts of physical computing curricula (e.g. [60]).  

Limitations and Future Work 
There are a few limitations related to this work that are 

important to discuss. First, we recognize that the gender 
breakdown of the two conditions is problematic. It is possible 
that some of the differences between groups we reported were 
due in part to the differences in gender between the two 
conditions. That being said, we do not see an obvious reason that 
would be the case, nor did we identify any instances where 
gender seemed to play a role in shaping interactions. 
Nevertheless, it is a noted limitation and one that will be 
addressed in future iterations of this line of work. 

A second limitation stems from differences between the two 
programming environments beyond liveness. While efforts were 
made to make the two environments as similar as possible, 
differences remained. Specifically, the variation in how tilting 
was handled in the two conditions potentially confounds some 
of the differences observed, especially in the challenges. 
MakeCode required a more pronounced tilt to recognize the 
interaction; MicroBlocks was more sensitive to the micro:bit’s 
orientation. Redesigning the environments to more clearly 
isolate the liveness is another avenue of future work as we look 
to scale up the study.  

Finally, as this was the first study of its kind, we began with a 
relatively small sample and a short intervention. We understand 
that the numerical data we show is merely descriptive and 
insufficient to make strong causal claims about the effects of 
liveness on children’s interactions with the micro:bit. In future 
work, we hope to work with larger numbers of participants and 
in more ecologically valid contexts. Our hope is the findings 

from this study serve as the foundation for future, larger 
research undertakings. 

Conclusion 
In this paper, we reported the findings of our exploratory 

study investigating how live programming impacts children 
programming and interacting with a physical computing device. 
Our results suggest that liveness does affect children’s 
interactions, both in free play and structured activities. This 
work advances our understanding of the design of programming 
environments for physical computing kits and the ways kids 
interact with them. Given the rise of such technologies, 
understanding how best to support children in meaningfully and 
successfully interacting with such devices can potentially have a 
significant impact. Through this study, we hope to help inform 
the design of future platforms so as to help children have 
positive early experiences with computing. 

Selection and Participation of Children 
As the ideas and actions of children were central to this work, 

care was taken to ensure our young participants felt comfortable, 
were treated respectfully, and all ethical research standards were 
followed. The primary method of recruitment was personal 
communications with parents engaged in research projects 
associated with our institution. The parents of minors completed 
consent forms on their behalf and the participants themselves 
completed child assent forms. Participants were given the 
micro:bit to take home for participating. 
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