
Programs in the Palm of your Hand
How Live Programming Shapes Children’s Interactions with Physical Computing Devices

Lautaro Cabrera
College of Education

University of Maryland
 College Park, MD, USA

 cabrera1@umd.edu

 John H. Maloney
 MIT Media Laboratory
 Cambridge, MA, USA

 jhmaloney@gmail.com

David Weintrop
 College of Education

 College of Information Studies
University of Maryland
College Park, MD, USA

 weintrop@umd.edu

ABSTRACT
As physical computing devices proliferate, researchers and
educators push to make them more engaging to learners. One
approach is to make the act of programming them more
interactive and responsive via live programming so that program
edits are immediately reflected in the behavior of the physical
device. To understand the impact of live programming on
interactions with physical computing devices, we conducted a
comparative study where children ages 11-15 programmed a
BBC micro:bit device using either the MicroBlocks live
programming environment or MakeCode, the micro:bit default
environment. Results show that MicroBlocks users spent more
time interacting directly with the physical device while showing
different paerns of interaction compared to MakeCode users.
We also found variations in the differences between
environments related to activity structures. is paper
contributes to the growing body of literature on how the design
of interfaces—like programming environments—for physical
computing devices shapes emerging interaction paerns.

CCS CONCEPTS
CCS → Human-centered computing → Interaction design →
Empirical studies in interaction design

KEYWORDS
Live Programming; Physical Computing Kits; Children;
Interaction Design

ACM Reference format:

Lautaro Cabrera, John H. Maloney and David Weintrop. 2019.
Programming in the Palm of your Hand: How Live Programming Shapes
Children’s Interactions with Physical Computing Devices. In 2019 ACM
Interaction Design and Children (IDC 2019), June 12-15, 2019, Boise, ID,
USA. ACM, New York, NY, USA. hps://doi.org/10.1145/3311927.3323138

Introduction
The push to introduce children to computer science and the

big ideas of computing is increasingly including physical
computing devices. Ten years ago, engaging children with
computing usually meant sitting them down in front of a
computer screen and keyboard. Today, a new landscape of
devices is changing how, where, and when kids can interact with
computing. Robots, microcontrollers, wearables, and dozens of
other elements in the Internet of Things now serve as entry
points into the world of computing for young users. With this
growing ecosystem of computing devices comes a similar
growing set of ways for learners to interact with and control
these computational devices.

The physical nature of the devices and their technical
capabilities shapes both how a child can interact with them and
what they can do through that interaction. Physical computing
devices can include accelerometers, sensors, and physical inputs
like buttons and switches alongside visual and audio inputs and
outputs. These capabilities introduce new sets of challenges and
opportunities for the interaction designers tasked with figuring
out how to make these devices accessible and engaging to
children. Towards this end, this paper seeks to understand one
specific aspect of the design of introductory programming
environments that has found widespread success in virtual
introductory programming environments but is rarely seen in
programming environments for physical devices—live
programming. In a live programming environment, users can
modify a program as it is running, thus allowing them to see the
results of edits immediately. The resulting liveness of the
environment makes for a highly engaging and interactive
programming experience and has been credited for part of the
success of the Scratch programming environment [1]. This direct
control over the resulting program has interesting potential
ramifications in the context of physical computing as it directly
connects the physical device in the hand of the programmer with
the virtual code they are writing. More specifically, this paper
seeks to understand how liveness impacts user interaction in the
context of physical computing by answering the following
research question:

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).
2019 ACM Interaction Design and Children (IDC 2019), June 12-15, 2019, Boise, ID,
USA.© 2018 Copyright held by the owner/author(s). 978-1-4503-0000-
0/18/06...$15.00
https://doi.org/10.1145/3311927.3323138

IDC 2019, June 12-15, 2019, Boise, ID, USA. L. Cabrera et al.

How does an environment supporting live programming
impact the way kids interact with and program a physical
computing device?

To begin to answer this question, we conducted an
exploratory study using two comparable programming
environments for the BBC micro:bit, one that supports live
programming and a second that does not. We recruited 11
children between the ages of 11 and 15 and had them write
programs for the micro:bit using one of the two environments.
We then analyzed the results looking for differences in the
programming practices used as well as differences in how they
interacted with the device while programming it. This paper
contributes to our understanding of the design of technology for
children and how the interplay between programming a device
and physically manipulating it shapes resulting interactions.
Further, this paper advances our understanding of how to design
programming environments for physical computing devices,
specifically with respect to how liveness shapes engagement and
interaction.

The paper continues with a review of relevant prior work.
We then introduce the technologies that are the focus of this
paper, the BBC micro:bit and our two programming
environments: MicroBlocks and MakeCode. Next, we detail our
methods before presenting our findings on how liveness shaped
interactions with the physical computing device. We conclude
with a discussion of the implications of this work with respect to
design and interaction.

Prior Work

Microcontrollers and Physical Computing Kits
Microcontrollers and physical computing devices specifically

designed for kids have a long and rich history [2]–[4]. The idea
of programmable microcomputers for kids grew out of a
collaboration between MIT’s Media Lab and the LEGO group,
which resulted in a programmable brick where basic programs
could be written to control motors and servos built with the
LEGO bricks [5], [6]. Over time, the LEGO bricks added new
capabilities, particularly around the introduction of sensors that
made it easier for builders to more directly interact with the
world around them [7]. These early construction kits were the
antecedents to the popular line of Lego Mindstorms construction
kits still in use today. As the tools and their abilities advanced,
designers sought to give users more direct access to the
underlying computational capabilities, moving beyond the “black
box”, making processes more visible and accessible [8].

Over time, designers of physical computing kits for kids
began to focus on ways to broaden participation in computing
and access to knowledge. For example, designers sought to
create programmable computing kits that were accessible to kids
as young as 4 years old by creating direction manipulation,
program-by-demonstration robots [9]. A second example of
expanding access was the creation of open-hardware and open-
source software boards that made it possible for devices to be
built and used in places where such technologies were
historically not available [10], [11]. This wave of computing kits

reflects not a technological advance, but a shift in the focus of
the design, towards new audiences, new interaction patterns,
and new opportunities to reach children.

As the landscape of physical computing devices matured and
toys and toolkits grew in popularity, new designs and new
architectures emerged. Many of these new platforms and updates
to existing platforms sought to achieve the goal of “low-floors,
high ceilings, and wide walls” by adopting and implementing
recommendations from the IDC community [12]. Constructions
kits such as Topobo [13] and RoBlocks (later Cublets) [14]
highlight new modular construction approaches for building and
controlling computational constructions. The growth in
popularity and diversity of physical computing kits has resulted
in a growing number of tools and platforms designed explicitly
for younger learners. A recent review of such technologies
identified 25 distinct computational kits for kids under the age of
7 that include a physical component [15]. This review highlights
the diversity of ways kids can be supported in giving
instructions to physical computing devices. These included
writing programs in a virtual context and transmitting them to
the physical device (e.g. Finch Robot [16]), giving instructions
directly to the physical device using buttons or on-board
controls (e.g. Code-a-pillar), as well as tangible programming
environments, where physical blocks are manipulated to
compose programs that are then run either by a physical or a
virtual sprite (e.g. Strawbies [17]) or a physical robot (e.g. KIBO
[18]).

Novice Programming Environments
Interestingly, the earliest programming environments design

for young learners and the earliest physical robotics kits came
out of the same research group at MIT. The creation of the Logo
programming language was the first time that computing power
was put at the fingertips of young people [19]. As computing
became more widespread, programming language designers
began to recognize the utility of having languages that were
more accessible to novices and could be used in instructional
contexts.

Today, novices are increasingly being introduced to
programming using graphical programming environments that
make programming easier and more accessible to learners [20].
One notable approach that has seen widespread adoption is
block-based programming. Block-based programming uses a
programming-command-as-puzzle-piece metaphor to provide
additional information to the user about how and where a
command can be used. Using visual cues and enforcing basic
composition rules, the environment itself can minimize or
altogether eliminate syntax errors while still retaining the
practice of authoring programming by assembling commands
one-after-the-other [1]. Led by the popularity of environments
such as Scratch [21], Alice [22], and Blockly [23], block-based
programming has a growing presence in both formal and
informal educational contexts. This can be seen in the rise of
curricula built around block-based tools (e.g. Exploring
Computer Science [24] and many of the Code.org courses [25])
as well as a growing number of toys and games for younger

Programs in the Palm of your Hand IDC 2019, June 12-15, 2019, Boise, ID, USA.

learners that leverage the block-based approach [26]. Research
on novices working with block-based tools shows that students
perceive block-based programming as being more accessible [27]
and also finds learners complete programming tasks more
quickly [28] and perform better on assessments in block-based
contexts [29], [30].

Creating intuitive and accessible programming interfaces for
novices can also be seen in the world of physical computing kits.
While the most popular microcontrollers are still mainly
controlled with professional languages and technologies (e.g.
C/C++ languages for Arduino boards), a growing number of
platforms are introducing learner-friendly programming
interfaces for their devices. For instance, the popular Scratch
environment includes extensions for programming a number of
devices, including the Makey Makey, micro:bit, Lego Mindstorms
EV3 and Lego WeDo [31]. Collectively, innovations in the design
of novice programming environment have made it easier for
novices and younger users to programmatically control
microcontrollers and physical robotics kits.

Live Programming
The defining feature of a live programming environment is

that changes made to the program are reflected immediately
giving the programmer the impression of changing the program
while it is running [32]. This means no manual compilation or
run step is required for edits or additions to a program to be
reflected. Live programming is not a recent innovation (e.g. [33],
[34]), however, there has been renewed attention in both
industry and in academia in recent years [35]. In a 2018
literature review, researchers found 87 academic papers on the
topics of live programming with another 112 papers on the topic
of live coding, and 31 papers focusing on exploratory
programming [32]. All three of three terms (live programming,
live coding, and exploratory programming) share the
characteristic of liveness in the act of programming but differ
slightly on how it is used. Live coding is generally concerned
with the creation of art and performance (e.g. [36], [37]),
whereas live programming is more explicitly focused on the act
of programming (e.g. [38], [39]). In the case of exploratory
programming, the focus is on tools that support the creation of
programs where final requirements are not yet defined, so ease
of quick prototyping is emphasized (e.g. [40]). Each of the
communities rely on different affordances of liveness with a
growing literature-base teasing apart the various supports.

The literature cites a number of advantages of live
programming. First is how the approach minimizes latency
between programming and seeing its effect, aiding in the
development process [41], what Burckhardt et al. [42] call the
“temporal and perceptive gap”. A second benefit relates to
enabling the act of programming to become a form of
performance in a way not possible in non-live environments [43].
A third benefit of particular relevance in this work is the
pedagogical potential of live programming. In live programming
environments, learners receive immediate feedback on the effect
a given instruction, parameter argument, or value will have on
the resulting behavior of the program. This feature is

particularly well-suited for languages and environments focused
on visually rendering objects [44] and can be seen in the
popularity of languages like Processing in educational contexts
[45]. Other work shows how live programming can facilitate
debugging by providing insight into the state of a program and
how changes to the code impact outcomes [46]. Victor, in an
influential series of prototypes, demonstrated a number of ways
that features of live programming could support novices learning
to program including direct manipulation of function parameters
that immediately influence the resulting program output [47].
However, other research has failed to find difference in learner
performance in live environments compared to non-live
alternatives [48], however this work was quite different than this
study as it was working with undergraduates in a formal
learning context and did not consider aspects of engagement or
programming practice.

Device and Environments
At the heart of this paper are three technologies: a small,

inexpensive microcontroller called the BBC micro:bit and two
programming environments for it: MakeCode and MicroBlocks.

Meet the BBC micro:bit
The BBC micro:bit (Fig. 1) is an inexpensive (around $20 in

the United States), credit-card sized computer created by the
British Broadcasting Corporation (BBC) as part of an effort to
increase digital skills among UK school children and "inspire the
digital visionaries of the future" [49]. In early 2016, the BBC
distributed free micro:bit's to every 7th grader in the UK school
system (about 800,000 children) [50], then spun off the non-
profit micro:bit Educational Foundation with the goal of
shipping 100 million micro:bits to children around the world [51].
To date, over 2 million micro:bits have been distributed [52].

The micro:bit combines a 32-bit ARM microcontroller with
sensors, buttons, an accelerometer, and a 5x5 grid of LEDs that
can show graphics or alpha-numeric outputs. Although the
micro:bit can be connected to external devices such as lights,
motors, and sensors, its rich set of built-in features allows
learners to focus on programming first, then add electronics later,
if desired. This makes it possible to use the micro:bit with
younger users than systems that require learning electronics and
programming at the same time, such as the Arduino.

Figure 1: The front (left) and back (right) of the micro:bit.

IDC 2019, June 12-15, 2019, Boise, ID, USA. L. Cabrera et al.

To program the micro:bit, the device must be physically

connected by a cable (i.e. tethered) to the laptop or computer on
which the program is being written. It is possible for the user to
interact with the micro:bit and its features (e.g. buttons and
accelerometer) while still tethered to the computer. In a non-live
programming environment (like MakeCode), the program must
be downloaded and transferred to the micro:bit manually, a
process that usually takes around 10 to 20 seconds. In a live
programming environment (like MicroBlocks), the program is
downloaded automatically in the background so the
programming being run on the micro:bit always matches what
the user sees on the screen.

Meet MicroBlocks
MicroBlocks (Fig. 2) (http://microblocks.fun) is a block-based

programming environment designed for physical computing kits.
Inspired by Scratch [21], GP [53], Snap! [54], and other “low-
threshold” block-based programming environments, the
interface shares many features common to this popular design
approach for introductory programming environments. These
features include a blocks palette on the left side of the interface
organized into high-level categories from which users can drag
blocks onto the canvas, where scripts are assembled. The version
of MicroBlocks used for this study was customized for the
micro:bit, so it included categories such as LED and Pins and
blocks such as Tilt X and show LEDs to give the user control
over the capabilities of the device.

Figure 2: MicroBlocks and two solutions for Challenge 1.

MicroBlocks combines the benefits of liveness when tethered
with autonomous operation when untethered. While the user is
writing and debugging their code, MicroBlocks behaves like a
tethered system, providing liveness, data readouts, and
immediate feedback and allowing the user to discover new
features and tinker with their code as they would in Scratch.
This means a user can click on a block, such as button A, and get
a real-time readout of whether the button is being pressed on the
device. Behind the scenes, the user's code is incrementally
downloaded and run on the physical device using a virtual
machine to avoid the need for a compilation step. When the

device is disconnected from the laptop, it continues to run the
user's program autonomously. This design makes MicroBlocks a
live programming environment with no explicit compilation or
download step that allows the user to untether their device at
any time and have the latest version of their program continue
running on the device. A longer discussion of the technical
implementation of MicroBlocks can be found in [55].
MicroBlocks was chosen for this study due to its novelty of
being a live programming environment for a physical computing
device.

Meet MakeCode
MakeCode (Fig. 3), (https://makecode.microbit.org/) the

programming environment linked to directly from the
micro:bit’s home page, was developed by Microsoft and is an
open source web-based environment for coding physical
computing devices [56]. MakeCode is able to run entirely within
a web browser, meaning there is no software to install and the
platform can run on a variety of different types of devices
(including tablets and smartphones). Like MicroBlocks,
MakeCode provides a block-based programming interface that
includes micro:bit-specific blocks alongside conventional
programming commands. MakeCode also includes a text-based
programming editor allowing users to write programs for the
micro:bit in JavaScript.

Figure 3: MakeCode and a solution for Challenge 1.

There are two defining features of MakeCode that distinguish
it from MicroBlocks. First, in order to run a program on the
physical device, the program must be compiled and downloaded
to the device. This can be accomplished by clicking the
download button and then dragging the file from the local
computer’s drive onto the micro:bit. For this study, the computer
was configured so MakeCode programs downloaded directly to
the micro:bit, a procedure that usually takes around 12 seconds.
The second feature unique to MakeCode is the inclusion of a
virtual micro:bit simulator (shown at the top left of Fig. 3). This
simulator makes it possible to run micro:bit programs without
needing to go through the download procedure. The simulator
includes the 5x5 LED grid, two buttons that can be “pressed” by
clicking on them, and supports tilting and shaking by moving
the mouse over the simulator. These features (the need to
download the program to run it on the physical device and the

Programs in the Palm of your Hand IDC 2019, June 12-15, 2019, Boise, ID, USA.

virtual simulator), along with the fact that MakeCode is the
environment used on the official micro:bit website, are the
reasons why it was chosen as the second environment for this
study.

Methods

Study Design
This paper reports on the findings of an exploratory

comparative study investigating if and how a live programming
environment shapes the way children interact with and program
physical computing devices. To begin to answer this question,
we recruited 11 children and had them write a series of short
programs using either a live programming environment
(MicroBlocks) or a conventional programming environment that
required downloading and transferring programs to the physical
device (MakeCode). As much as possible, the two programming
environments were isomorphic, meaning the two environments
had the same set of blocks and presented the same set of
capabilities to the user. The goal of the study design is to try and
control for external factors beyond the live programming
component as much as possible. Differences between the two
environments beyond the live programming feature are
discussed in greater detail later in the limitations section.

Participants & Procedures
Children were recruited to participate in the study via email,

social media, and personal communications. A total of 11
children (6 males, 5 females) between the ages of 11 and 15 (M =
13.2, SD = 1.33) participated in the hour-long study and were
allowed to keep the micro:bit as compensation.

Participants were assigned to use either the MicroBlocks or
MakeCode environment. Our approach for assigning participants
to an environment was to alternate environments between each
interview: the first participant used MakeCode, the second used
MicroBlocks, the third used MakeCode, and so on. The
MicroBlocks group was comprised of 5 girls and one boy (age M
= 13.5), while the MakeCode group was composed of 5 boys (age
M = 12.8). The gender imbalance was coincidental but still
potentially problematic and is discussed in the limitations
section.

The study procedure began by going through a consenting
procedure and was followed by a short introduction to the
micro:bit, showing off the main features of the device. This
included showing participants the 5x5 LED matrix, the two
buttons, and describing how the device has an accelerometer so
can detect being tilted or shaken. Next, the researcher gave the
participant a brief introduction to the programming environment
that he or she would be using. This included describing how to
compose a program as well as how to run it on the micro:bit. In
the case of the MakeCode, the interviewer also described how
the micro:bit simulator worked on the screen. As much as
possible, the introduction to the programming environments was
the same between the two conditions. The introduction lasted
around 3 minutes.

The remainder of the study was divided into two 20-minute
parts. The first “tinkering” phase had participants play around
with the micro:bit to create any program that they wanted. The
goal of this stage was to give kids time to get acquainted with
both the device and the programming environment, as well as to
see how the environments shaped interactions with the device
during free play. Since the participants had already seen the
initial demonstration, we only provided additional assistance if
the participant requested it. While we wanted to give
participants the freedom to explore the tools, we also wanted
them to acquire some initial knowledge that would at least give
them a chance to succeed in completing the challenges.

The second phase of the study consisted of three
programming challenges. Whereas the tinkering phase was
looking at aspects of engagement and playfulness, the challenges
were designed to get the participants to use specific
programming concepts (e.g. conditional logic) and capabilities of
the device (e.g. button pressing). The tasks were designed to be
of increasing difficulty.

Figure 4: Tilting micro:bit on Challenge 1

The first challenge was to create a program so that when the
micro:bit was tilted to the left (Fig. 4), its leftmost column of
LEDs would turn on and when tilted to the right, the right-most
column of lights should turn on (Fig 5a). For the second
challenge, participants had to create a program so that when the
left button was pressed and the micro:bit was tilted to the left,
and arrow would show on the left side (Fig 5b). The same arrow
would need to show on the right side when the right button was
pressed and the micro:bit was tilted to the right.

Figure 5: LED patterns for challenges 1 (a), 2 (b), and 3 (c).

IDC 2019, June 12-15, 2019, Boise, ID, USA. L. Cabrera et al.

The last challenge was to create a program so that when the
micro:bit was tilted upwards, it would display a “cascade” of
lights where the top row lit up, followed by the 2nd row and so
on, as shown in Fig. 5c. The participant was asked to make the
cascade repeat three times.

Data Collection & Analysis
We captured three main sources of data. First, we video-

recorded each participants’ interaction with the micro:bit (Fig. 4).
Second, we used screen capture software to record how
participants interacted with the programming environments.
Third, we audio-recorded the sessions. These data sources were
individually analyzed and then collectively deductively coded
using NVivo [57].

For each screen recording, we coded each time a new block
was added to the program, as well as each time the participant
explicitly ran their program on the micro:bit. In MakeCode, this
took the form of the user clicking on the “Download” button and
transferring the program onto the device. In MicroBlocks, the
live feature incrementally downloads programs automatically, so
we recorded only when participants “forced” a run by clicking
on the “Start” button or on program script. For participants using
MakeCode, we also recorded each time they used the simulator—
defined as tilting the simulated micro:bit or clicking on either of
its buttons. These results are reported in the “Sim. Buttons” and
“Sim. Tilts” columns in Table 1.

As we are interested in how the children interacted with the
micro:bit, we quantitatively analyzed each micro:bit video,
coding for four specific types of interaction: how many times the
participant touched the micro:bit, how long (in total) they touch
the device for, how many times they tilted the micro:bit, and
how many times they press the micro:bit’s buttons. We also
calculated the average time per touch for each child.

While our quantitative findings are reported, we did not
conduct formal statistical analyses to compare interactions
between the two groups. This is due both to the size of our
participant pool (n = 11) as well as the exploratory nature of the
study. As such, the findings below report mainly qualitative
findings seeking to understand how the live programming
feature shaped the way children engaged and interacted with the
technology. When we use quantities to describe interactions, we

do so to illustrate differences or similarities across groups—not
to make generalizable conclusions. One goal for this work is to
lay the groundwork for future studies with larger participant
pools that would allow us to make more robust inferences.
Beyond the quantitative measures, the analysis of the micro:bit
video and the screen capture were then aligned to create
timelines for each participant showing their sequence of
interactions. This was done to analyze participants’ behavior and
look for patterns between the physical and virtual aspects of
programming the micro:bit.

Findings
This section begins by discuss findings from the Tinkering

phase before moving on to results from the challenges phase.

Tinkering

Micro:bit Capabilities.
The first difference that emerged in our analysis of the

tinkering phase was in the micro:bit capabilities that participants
chose to incorporate into their programs. Five of the six
participants who used MicroBlocks created programs that
involved either button pressing or device tilting. In contrast,
only 2 out of the 5 MakeCode users created such programs. All
participants also created programs that involved the LED lights
in the micro:bit. This suggests that the live programming
aspects of MicroBlocks and the in-editor simulator of MakeCode
impacted how children interacted with the micro:bit—
particularly on their intent to integrate physical interactions.
One potential explanation is that the ability to immediately test
the effects of tilts or button presses in the live programming
environment led to an increase in the use of those interactions in
the program. However, we simply counted participants who
attempted to integrate tilting or buttons, not just those who were
successful in doing so. Therefore, another possible explanation is
that the mere expectation of liveness that MicroBlocks
participants had led them to attempt to integrate physical
interactions that could be tested immediately. The same
principle was true for the MakeCode participants as most created
programs that could be tested immediately by looking at the
LEDs in the simulator. We will return to the idea of expected
liveness again in our analysis of the challenges.

 n Gender Age Blocks Runs Time
touching

Time per
touch

micro:bit
Touches

micro:bit
Buttons

micro:bit
Tilts

Sim.
Buttons

Sim.
Tilts

MicroBlocks
Tinkering

21.6 5.6 65.9 4.54 14.5 17.3 1.8 – –

Challenges 21 6.3 425.8 22.8 18.7 13.3 67 – –
Total 6 1M / 5F 13.5 42.6 11.3 491.7 14.8 33.2 30.67 68.83 – –
MakeCode
Tinkering

23 3.8 59.6 11.04 5.4 28.4 14.6 4.4 4

Challenges 19.2 5.4 223.2 22.3 10 34.4 42 6 21.4
Total 5 5 M 12.8 42.2 9.2 282.8 18.4 15.4 62.8 56.6 10.4 25.8

Table 1. Interaction averages per group. Times are in seconds.

Programs in the Palm of your Hand IDC 2019, June 12-15, 2019, Boise, ID, USA.

 Of the 7 children who created programs with a physical
interaction, all but one of them used only one type of interaction,
either tilting or button pressing, but not both. This suggests that
while the live programming encouraged children to experiment
with the physical capabilities, they were not motivated to try all
of the capabilities on display. It is possible that these results
stemmed from the relatively limited time provided to explore the
new device and its programming environment.

Interaction Patterns.
Looking at our basic measures of interaction during the

Tinkering stage (Table 1), we see that MakeCode users touched
the micro:bit for longer periods of time but less often. In other
words, users of MicroBlocks seemed to make short but numerous
touches, while MakeCode users made fewer, longer micro:bit
touches. In terms of specific interactions, the MakeCode group
recorded more button presses but fewer tilts than the
MicroBlocks participants during this phase. Within the
MakeCode group, 4 out of the 5 participants used the simulator
during the tinkering phase.

There are a number of possible factors that contributed to
these differences we noticed between groups. For example,
MicroBlocks participants could only interact with the micro:bit
one way (by touching it), while MakeCode participants could
both touch the physical device or use the simulator. This may
have contributed to the additional number of touches in the first
group. Therefore, it is possible that the presence of the simulator
promoted MakeCode users to more heavily focus on the screen—
therefore neglecting interactions with the device. As one
participant from this group explained after the challenges: “I
would prefer to program something that is just in the computer [as
opposed to a device] because that was easier”. It’s also possible
that the pattern of “short but often” touches in the MicroBlocks
group stemmed from the live feature in the environment. Seeing
immediate changes in the device may have prompted more
interactions with it to check programming progress. This more
direct interaction and immediate feedback could explain the
greater number of interactions with the micro:bit.

In summary, MakeCode participants tended to touch the
micro:bit less often but for longer periods of time per touch,
while MicroBlocks users touched the device more often but for
shorter durations.

Challenges

Challenge Success Rates.
Looking across the two conditions, we found the MakeCode

group had slightly more success with respect to completing the
challenges. All five of the MakeCode participants completed the
first challenge, compared to only four of the six MicroBlocks
participants. One child from each group completed the second
challenge. Further, children in the MakeCode condition typically
finished the first challenge more quickly, leaving more time to
work on the second challenge.

Our explanation of this difference has less to do with the live
programming capability of the environments and instead, we
attribute it to slight differences in the programming interface. As

shown in Fig. 3., MakeCode has a single event block for a tilt
event. On the other hand, MicroBlocks required participants to
use the block tilt X alongside another command (either an if
block or the on condition event block, both shown in Fig. 2). It is
possible that children in the MicroBlocks group were less
successful in completing the challenge because it required a
more complex combination of blocks. As such, the finding from
this difference supports other literature looking at how language
design impacts novice programmers [29], [58], but does not lead
to conclusive evidence on the role of live programming in
accomplishing tasks.

Interaction Patterns.
During the challenges phase, we noticed that participants in

the MicroBlocks condition seemed to interact with the micro:bit
more often and for a longer total amount of time—an interaction
pattern that aligns with the results of the tinkering phase.
Addutuinally, MakeCode participants pressed the micro:bit’s
buttons more often than MicroBlocks users while the opposite
was true for tilting interactions. Finally, the number of simulated
tilts by MakeCode users seemed to increase during the
challenges phase, which can be logically explained by the nature
of the challenges.

The differences in interaction during the challenges can in
part be explained by the success rates reported in the previous
section. Because the MakeCode environment has built-in blocks
for actions associated with tilting, it is possible that kids who
used MakeCode tilted the device fewer times because they did
not need to test their tilting logic as often. Likewise, because the
MakeCode participants advanced to the second challenge faster,
which required them to program a button press, it is not
surprising that we recorded more button presses in the
MakeCode condition.

Programming Practices.
Combining the analyses of the interaction cameras and the

screen recordings, we identified different patterns of
programming during the challenges. We hypothesized that each
group would show different interaction patterns based on the
affordances of the environment. We expected to see MicroBlocks
users add blocks, test the results on the micro:bit, and then go
back to adding blocks to correct or expand on the program (Fig.
6a). On the other hand, we expected MakeCode participants to
use the simulator for iterative development and then download
and test the program on the physical device once it was closer to
completion (Fig. 6b).

Figure 6: Hypothesized programming patterns.

All six of the participants in this group showed instances
where the sequence shown in Fig. 6a was followed: add block,

IDC 2019, June 12-15, 2019, Boise, ID, USA. L. Cabrera et al.

touch the device, add block was repeated multiple times
consecutively. While all 5 MakeCode participants used the
simulator at least once during the challenge phase, three of them
used the simulator to test recently added blocks and continued to
edit the program based on the simulator’s results without
interacting the device.

Comparing the interaction patterns across environments, two
differences arose. First, MicroBlocks users appeared to alternate
between adding blocks and touching the device more often than
MakeCode users. A second—and unexpected—result was that
some children in the MakeCode group often showed our
hypothesized MicroBlocks interaction of making modifications
and going right to the physical device (shown in Fig. 6a). For
example, one participant who was working on challenge 2 found
that his LED pattern was incomplete—the micro:bit was turning
on three lights instead of the required eight. To fix this problem,
he proceeded to change his program to add the correct amount
of lights on his show LEDs block and then immediately tilted the
micro:bit to see any changes. After unsuccessfully trying to tilt
the micro:bit twice, he realized his mistake and pressed the
“download” button. Here again, we see the phenomenon of
expected liveness, even when the environment is not actually
“live”.

Logically, engaging in the block-touch-block pattern in
MakeCode is problematic as the code modifications will never be
reflected on the physical devices as they have not been
downloaded to it. But, as illustrated in this example, some
participants made edits to their program and then checked to see
the outcome on the micro:bit despite the micro:bit still running
an older version of the code that did not have the most recent
change. Four out of the five MakeCode participants touched the
device after adding blocks without downloading the program
first. Two of them did so repeatedly. In other words, it appeared
as though the participants were expecting a live programming
behavior that was not present. This expectation was particularly
problematic while debugging as there was a case where—
contrary to our example—a correct modification was made but
the participant did not think it was correct because he did not see
the changes reflected on the device. This is a concrete
demonstration of one of the benefits of live programming
reported in the literature [59].

Discussion
The numerous small comparisons between the two groups

help us illuminate the bigger point of how the liveness in
MicroBlocks impacted how participants programmed and
interacted with the micro:bit. During the tinkering stage,
liveness seemed to prompt shorter, more numerous interactions
with the physical device, as well as more attempts to integrate
button presses and tilts into the program. When the activity
shifted to structured tasks where interaction with the micro:bit
was required, those differences persisted, with participants in the
MicroBlocks condition touching the device more often and for a
longer total amount of time. However, it is also possible that the
differences in interaction were not exclusively due to liveness.

The presence of the simulator in MakeCode may have changed
how and when users chose to interact with the device directly.

In terms of programming patterns, the liveness of
MicroBlocks seemed to support an incremental process that
continuously alternated between adding blocks to the program
and testing their effects directly on the physical device. On the
other hand, the simulator in MakeCode provided a few situations
where testing could be done virtually, and physical interaction
was limited to testing final solutions. In fact, one participant
completed the whole program using only the simulator, stating
he was done without testing it on the physical device.

The Expectation of Liveness
One of the interesting findings to emerge from this study was

documenting children’s expectations of a live programming
interaction, even when the environment did not have that
capability. This can be seen most clearly by the fact that all but
one of the participants in the MakeCode condition tried to test a
programmatic change on the physical board without
downloading it to the board first. This is a potentially significant
finding with respect to the design of programming environments
for novices. As more and more interfaces and devices
demonstrate live programming behavior, young users may come
to expect such immediate feedback, meaning non-live
environments may become less engaging or enjoyable. It is also
possible that the mismatch between the users’ expectations and
the behavior of the system may become the source of errors and
frustration. The lack of liveness can also negatively impact the
user’s experience, as one MakeCode participant said mid-session:
“hurry up and save!” In this case, the child knew the environment
was not updating “live”, but it was clear he would have preferred
if it was.

Environment Design Impacts
The two environments used in this study also provided some

insights into the tensions of designing environments with low
floors and high ceilings [12] and how interface design decisions
we make impact the paths users take. One clear example of this
from this study can be seen in how the design of the languages
impacted the transition from challenge 1 to challenge 2.
Challenge 1 asked users to write a program to respond to the
micro:bit being tilted. Challenge 2 added the requirement of a
new behavior when the button was pushed while the micro:bit
was being tilted. MakeCode provides a single event block (on tilt
left) that made it easy for participants to complete the first
challenge, but in order to modify the program to also accomplish
the second challenge, the child would need to add a conditional
statement inside the event, as there is no on tilt left and button
pushed command. As a result, all MakeCode participants
completed the first challenge but most struggled with the second.
In this way, MakeCode was low-threshold but left a significant
conceptual hurdle for Challenge 2.

MicroBlocks, on the other hand, did not have a single block to
respond to the micro:bit being tilted. Instead, it required the user
to build the behavior from a generic on condition event block.

Programs in the Palm of your Hand IDC 2019, June 12-15, 2019, Boise, ID, USA.

This made challenge 1 more challenging (two of the MicroBlocks
participants did not complete it), but the transition from a tilting
behavior to a tilting-and-button-pressed behavior was relatively
straightforward. In this difference between how the two
languages supported the novice in implementing this
functionality, we can see the impact of language and interface
design shaping user interactions.

Physical Computing Devices for Younger Ages
One contribution of this study is additional evidence to

support the introduction of children to basic programming, and
the field of computer science more broadly, through physical
computing. All of the participants seemed to enjoy the
experience and were excited to keep the micro:bit at the
conclusion of the session, with some saying that the tinkering
stage was “fun” and “cool”.

While this study did not focus on learning outcomes, the
identified differences in interaction due to the liveness do have
potential educational implications. The programming patterns
users develop and their emerging conceptualizations of basic
computing ideas are all shaped by the tools used. Identifying
how liveness impacts learning in physical computing contexts is
a clear future direction of our work—especially given the large-
scale rollouts of physical computing curricula (e.g. [60]).

Limitations and Future Work
There are a few limitations related to this work that are

important to discuss. First, we recognize that the gender
breakdown of the two conditions is problematic. It is possible
that some of the differences between groups we reported were
due in part to the differences in gender between the two
conditions. That being said, we do not see an obvious reason that
would be the case, nor did we identify any instances where
gender seemed to play a role in shaping interactions.
Nevertheless, it is a noted limitation and one that will be
addressed in future iterations of this line of work.

A second limitation stems from differences between the two
programming environments beyond liveness. While efforts were
made to make the two environments as similar as possible,
differences remained. Specifically, the variation in how tilting
was handled in the two conditions potentially confounds some
of the differences observed, especially in the challenges.
MakeCode required a more pronounced tilt to recognize the
interaction; MicroBlocks was more sensitive to the micro:bit’s
orientation. Redesigning the environments to more clearly
isolate the liveness is another avenue of future work as we look
to scale up the study.

Finally, as this was the first study of its kind, we began with a
relatively small sample and a short intervention. We understand
that the numerical data we show is merely descriptive and
insufficient to make strong causal claims about the effects of
liveness on children’s interactions with the micro:bit. In future
work, we hope to work with larger numbers of participants and
in more ecologically valid contexts. Our hope is the findings

from this study serve as the foundation for future, larger
research undertakings.

Conclusion
In this paper, we reported the findings of our exploratory

study investigating how live programming impacts children
programming and interacting with a physical computing device.
Our results suggest that liveness does affect children’s
interactions, both in free play and structured activities. This
work advances our understanding of the design of programming
environments for physical computing kits and the ways kids
interact with them. Given the rise of such technologies,
understanding how best to support children in meaningfully and
successfully interacting with such devices can potentially have a
significant impact. Through this study, we hope to help inform
the design of future platforms so as to help children have
positive early experiences with computing.

Selection and Participation of Children
As the ideas and actions of children were central to this work,

care was taken to ensure our young participants felt comfortable,
were treated respectfully, and all ethical research standards were
followed. The primary method of recruitment was personal
communications with parents engaged in research projects
associated with our institution. The parents of minors completed
consent forms on their behalf and the participants themselves
completed child assent forms. Participants were given the
micro:bit to take home for participating.

REFERENCES
[1] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “e Scratch

Programming Language and Environment,” ACM Trans. Comput. Educ., vol.
10, no. 4, pp. 1–15, 2010.

[2] P. Blikstein, “Gears of Our Childhood: Constructionist Toolkits, Robotics, and
Physical Computing, Past and Future,” in IDC ’13, 2013, pp. 173–182.

[3] F. Martin, B. Mikhak, M. Resnick, B. Silverman, and R. Berg, “To Mindstorms
and Beyond: Evolution of a Construction Kit for Magical Machines,” in Robots
for kids, San Francisco, CA: Morgan Kaufmann Publishers Inc, 2000, pp. 9–33.

[4] T. S. Mcnerney, “From turtles to Tangible Programming Bricks: explorations
in physical language design,” Pers Ubiquit Comput, vol. 8, pp. 326–337, 2004.

[5] F. Martin, R. Sargent, and B. Silverman, “Programmable Bricks: Toys to think
with,” IBM Syst. J., vol. 35, no. 3&4, pp. 443–452, 1996.

[6] R. Sargent, M. Resnick, F. Martin, and B. Silverman, “Building and Learning
with Programmable Bricks,” in Constructionism in Practice: Designing,
inking, and Learning in a Digital World, Y. B. Kafai and M. Resnick, Eds.
Hillsdale, NJ: Lawrence Erlbaum Associates, 1966, pp. 161–173.

[7] M. Resnick et al., “Digital manipulatives: New toys to think with,” in
Proceedings of the CHI ’98 conference, 1998.

[8] M. Resnick, R. Berg, and M. Eisenberg, “Beyond Black Boxes: Bringing
Transparency and Aesthetics Back to Scientific Investigation,” J. Learn. Sci.,
vol. 9, no. 1, pp. 7–30, 2000.

[9] P. Frei, V. Su, B. Mikhak, and H. Ishii, “Curlybot: designing a new class of
computational toys,” Proc. SIGCHI Conf. Hum. factors Comput. Syst., 2000.

[10] A. Sipitakiat, P. Blikstein, and D. P. Cavallo, “GoGo Board : Augmenting
Programmable Bricks for Economically Challenged Audiences,” in In
Proceedings of the International Conference of the Learning Sciences, 2003, no.
617.

[11] A. Sipitakiat and P. Blikstein, “ink globally, build locally: a technological
platform for low-cost, open-source, locally-assembled programmable bricks
for education,” Proc. fourth Int. Conf. Tangible, Embed. embodied Interact. - TEI
’10, 2010.

[12] M. Resnick and B. Silverman, “Some Reflections on Designing Construction
Kits for Kids,” in IDC 2005, 2005.

[13] H. Raffle, A. Parkes, and H. Ishii, “Topobo: a constructive assembly system
with kinetic memory,” Proc. SIGCHI Conf. …, 2004.

IDC 2019, June 12-15, 2019, Boise, ID, USA. L. Cabrera et al.

[14] E. Schweikardt and M. D. Gross, “roBlocks: A Robotic Construction Kit for
Mathematics and Science Education,” in ICMI ’06, 2006, pp. 6–9.

[15] J. Yu and R. Roque, “A Survey of Computational Kits for Young Children,” in
IDC 2018, 2018, pp. 289–299.

[16] T. Lauwers and I. Nourbakhsh, “Designing the Finch: Creating a Robot
Aligned to Computer Science Concepts,” Proc. Twenty-Fourth AAAI Conf.
Artif. Intell., 2010.

[17] F. Hu, A. Zekelman, M. Horn, and F. Judd, “Strawbies: Explorations in
Tangible Programming,” in Proceedings of the 14th International Conference on
Interaction Design and Children, 2015, pp. 410–413.

[18] A. Sullivan, M. Elkin, and M. U. Bers, “KIBO Robot Demo: Engaging Young
Children in Programming and Engineering,” Proc. 14th Int. Conf. Interact. Des.
Child. - IDC ’15, 2015.

[19] S. Papert, “Mindstorms: Computers, children, and powerful ideas,” NY Basic
Books, 1980.

[20] B. Y. D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable
Programming : Blocks and Beyond,” Commun. ACM, vol. 60, no. 6, pp. 72–80,
2017.

[21] M. Resnick et al., “Scratch: Programming for All,” Commun. ACM, vol. 52, no.
11, pp. 60–67, 2009.

[22] S. Cooper, W. Dann, and R. Pausch, “ALICE: A 3-D Tool for Introductory
Programming Concepts,” in CCSC ’00 Proceedings of the fih annual CCSC
northeastern conference on e journal of computing in small colleges, 2000, vol.
5, pp. 108–117.

[23] N. Fraser, “Ten ings We’ve Learned from Blockly,” in IEEE Blocks and
Beyond Workshop, 2015, pp. 49–50.

[24] J. Goode and J. Margolis, “Exploring Computer Science: A Case Study of
School Reform,” ACM Trans. Comput. Educ., vol. 11, no. 2, pp. 1–16, 2011.

[25] Code.org, “Teach Computer Science,” 2019. [Online]. Available:
hps://studio.code.org/courses?view=teacher. [Accessed: 04-Aug-2019].

[26] C. Duncan, T. Bell, and S. Tanimoto, “Should your 8-year-old learn coding?,”
in Proceedings of the 9th Workshop in Primary and Secondary Computing
Education, 2014, pp. 60–69.

[27] D. Weintrop and U. Wilensky, “To Block or not to Block , at is the
estion: Students’ Perceptions of Blocks-based Programming,” in IDC ’15,
2015, pp. 199–208.

[28] T. W. Price and T. Barnes, “Comparing Textual and Block Interfaces in a
Novice Programming Environment,” in ICER’15, 2015.

[29] D. Weintrop and U. R. I. Wilensky, “Comparing Block-Based and Text-Based
Programming in High School Computer Science Classrooms,” ACM Trans.
Comput. Educ., vol. 18, no. 1, pp. 1–25, 2017.

[30] D. Weintrop, H. Killen, and B. Franke, “Blocks or Text? How Programming
Language Modality Makes a Difference in Assessing Underrepresented
Populations,” in ICLS 2018, 2018, pp. 328–335.

[31] S. Dasgupta, S. M. Clements, Y. Abdulrahman, C. Willis-ford, and M. Resnick,
“Extending Scratch: New Pathways into Programming,” in 2015 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
2015.

[32] P. Rein, S. Ramson, J. Lincke, R. Hirschfeld, and T. Pape, “Exploratory and
Live, Programming and Coding: A Literature Study Comparing Perspectives
on Liveness,” Art, Sci. Eng. Program., vol. 3, no. 1, 2019.

[33] J. H. Maloney and R. B. Smith, “Directness and Liveness in the Morphic User
Interface Construction Environment,” in UIST ’95, 1995, pp. 21–28.

[34] I. E. Sutherland, “Sketch Pad a Man-machine Graphical Communication
System,” in Proceedings of the SHARE Design Automation Workshop, 1964, p.
6.329--6.346.

[35] J. Kubelka, R. Robbes, and A. Bergel, “e Road to Live Programming: Insights
From the Practice,” in ICSE, 2018.

[36] N. Collins, A. McLean, J. Rohrhuber, and A. Ward, “Live coding in laptop
performance,” Organised Sound, vol. 8, no. 3, 2003.

[37] A. F. Blackwell and N. Collins, “e Programming Language as a Musical
Instrument,” in Psychology of Programming Languages Interest Group, 2005.

[38] C. M. Hancock, “Real-Time Programming and the Big Ideas of Computational
Literacy,” 2003.

[39] S. L. Tanimoto, “VIVA: A visual language for image processing,” J. Vis. Lang.
Comput., vol. 1, no. 2, pp. 127–139, 1990.

[40] D. W. Sandberg, “Smalltalk and exploratory programming,” ACM SIGPLAN
Not., vol. 23, no. 10, pp. 85–92, 1988.

[41] S. L. Tanimoto, “A Perspective on the Evolution of Live Programming,” in
LIVE ’13 Proceedings of the 1st International Workshop on Live Programming,
2013, pp. 31–34.

[42] S. Burckhardt et al., “It’s Alive! Continuous Feedback in UI Programming,” in
PLDI ’13, 2013, pp. 95–104.

[43] N. Collins, A. Mclean, J. Rohrhuber, and A. Ward, “Live coding in laptop
performance,” Organised Sound, vol. 8, no. 3, pp. 321–329, 2003.

[44] S. Mcdirmid, “Living it up with a Live Programming Language,” in OOPSLA,
2007, pp. 623–637.

[45] H. Tsukamoto, Y. Takemura, H. Nagumo, I. Ikeda, A. Monden, and K.
Matsumoto, “Programming Education for Primary Schoolchildren Using a

Textual Programming Language,” in 2015 IEEE Frontiers in Education
Conference (FIE), 2015, pp. 1–7.

[46] J. P. Kramer, J. Kurz, T. Karrer, and J. Borchers, “How live coding affects
developers’ coding behavior,” in Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC, 2014, pp. 5–8.

[47] B. Victor, “Learnable Programming,” 2012. [Online]. Available:
hp://worrydream.com/LearnableProgramming/.

[48] C. D. Hundhausen and J. L. Brown, “An experimental study of the impact of
visual semantic feedback on novice programming,” J. Vis. Lang. Comput., vol.
18, no. 6, pp. 537–559, 2007.

[49] J. Wakefield, “BBC gives children mini-computers in Make it Digital scheme,”
BBC:News, 2015. [Online]. Available: hps://www.bbc.com/news/technology-
31834927.

[50] S. Sentance, J. Waite, S. Hodges, E. Macleod, and L. E. Yeomans, “‘Creating
cool stuff’ – Pupils’ experience of the BBC micro:bit,” in Proceedings of the 48th
ACM Technical Symposium on Computer Science Education: SIGCSE 2017, 2017.

[51] J. Curtis and C. Hopping, “Foundation aims to ship 100 million micro:bits,”
ITPRO, 2016. .

[52] BBC, “Two million BBC micro:bits distributed globally,” 2018. [Online].
Available: hps://www.bbc.co.uk/mediacentre/latestnews/2018/two-million-
bbc-micro-bits-distributed-globally.

[53] J. H. Maloney, M. Nagle, and J. Mönig, “GP: A General Purpose Blocks-Based
Language.,” in Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, 2017, pp. 739–739.

[54] B. Harvey and J. Mönig, “Bringing ‘no ceiling’ to Scratch: Can one language
serve kids and computer scientists?,” in Proceedings of Constructionism 2010
Conference, 2010, pp. 1–10.

[55] Authors, “Authors.” 2019.
[56] T. Ball, J. Bishop, and J. Finney, “Multi-Platform Computing for Physical

Devices via MakeCode and CODAL,” in ACM/IEEE 40th International
Conference on Soware Engineering: Companion Proceedings Multi-Platform,
2018, pp. 552–553.

[57] R. C. Bogdan and S. K. Biklen, “alitative Data Analysis and Interpretation,”
in alitative Research in Education: An Introduction to eories and Methods,
5th Editio., Pearson, 2007, p. 336.

[58] A. Stefik and S. Siebert, “An Empirical Investigation into Programming
Language Syntax,” ACM Trans. Comput. Educ., 2013.

[59] H. Lieberman and C. Fry, “Bridging the gulf between code and behavior in
programming,” Proc. SIGCHI Conf. Hum. factors Comput. Syst. - CHI ’95, 1995.

[60] D. A. Fields, Y. B. Kafai, T. Nakajima, and J. Goode, “Teaching Practices for
Making E-Textiles in High School Computing Classrooms,” in Proceedings of
the 7th Annual Conference on Creativity and Fabrication in Education, 2017, p.
5:1--5:8.

